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The X-ray scattering factor of bond electrons in a diatomic molecule is calculated from Fourier transforms 
of atomic wave functions, by the use of the convolution theory. For the hydrogen molecule, it is shown that 
the contribution of bond electrons is large for the scattering vector in the direction of the molecular axis. 

The electron cloud in an atom contained in a molecule or a 
crystal may differ from spherical symmetry by chemical 
bonds or other effects. McWeeny (1952, 1953, 1954) calcu- 
lated the scattering factors of hydrogen and carbon atoms 
involving H - H  and C-C bonds, respectively. Tomiie (1958) 
discussed the electron distribution in C-H bonds for various 
electronic states of the carbon atom using a valence bond 
method. Stewart (1969) reported the generalized form 
factors of products of self-consistent-field atomic orbitals 
for first-row atoms. Also, several calculations were at- 

* Deceased 31 May 1967. 
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Fig. 1. Fm FvB and F0 of a hypothetical H2 crystal for the 
a* and b* directions. 

tempted concerning the X-ray scattering due to bonding 
electrons in covalent-bond crystals having the diamond 
structure (e.g. Raccah, Euwema, Stukel & Collins, 1970). 
The present paper presents a simplified method of calcu- 
lating the bond scattering factors by the convolution 
theory. The electron distribution of a bonded atom pair 
a-b is given, by either the valence bond method (VB) or the 
molecular orbital method (MO), as, 

Qab : na~)a ~a + Hb~Ob ~b + (nab/Sab)~O*a q)b, (1) 

where ¢~a and lab are the atomic wave functions of atoms a 
and b respectively, na and no the electron populations 
localized at the atoms a and b respectively, na0 the bond 
electron population and S,o the overlap integral. ~p*tp a and 
tp~, ~Pb are the spherical parts of valence electrons belonging 
to the atoms a and b respectively, and tp*¢ b represents a 
spherical part due to bonding. We define the bond scat- 
tering factor as, 

f s (S)=  ~ tp*tp b exp (2rdS. r) d r ,  (2) 
d 

where S and r are reciprocal and real space vectors respec- 
tively. The Fourier transforms of atomic wave functions 
tp* and tp b are given by, 

ga*(S)= I ~* exp ( - 2 ~ i S .  r) d r ,  

, - . . . . . .  : 7  . . 

I" gb(S) = ~% exp (2~iS. r) d r .  

According to the convolution theory, fB(S) is given as, 

(3) 

fB(S) = l g~*(M)" g0(M-S) d M .  (4) 

If  we denote the part of electron distribution, due to bond 
electrons only, by eBL(X), it is given as 

eBL(X)=(1/V) ~FB(H) exp ( -  2zciH. X) ,  (5) 
H 

where 
Fn(n) = ~.fnj exp (2niH.  Xj),  (6) 

1 

and V is the volume of a unit cell, H the reciprocal lattice 
vector, Xj the position of the j th  bond electron in the unit 
cell and fnj the j th  bond scattering factor. 
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Now we consider hypothetical three-dimensional peri- 
odic functions ~*r(X) and q~t,L(X) composed of (,Oa* and % 
respectively. Then 0~r.(X) is given by 

0~,(x) = ~*, (x).  ~ , ( x ) .  

We define ~ [ ( X )  and q~bL(X) as, 

cbfz(X)=(1/V)~G*(H) exp (2rciH. X) ,  (7) 
H 

~br .(X) = (1/V)~Gb(H) exp ( -  2rciH. X) ,  
H 

where 

G~ (H) = ~g,,j  exp ( -  2rciH. Xj) ,  
J 

Go(H) = ~gt, j exp (2tr i l l .  Xi) .  (8) 
J 

Equations (7) and (8) correspond to equations (5) and (6) 
respectively, that is, G(H) is a 'structure factor of the 
atomic wave function' and gj is the Fourier transform of 
the ] th  atomic wave function as defined by equation (3). 
Using the convolution theory we have 

1 
FB(H)  = - ~  ~G*(K) .  G/,(K-H). (9) 

K 

If the Fourier transforms of the atomic wave function, g 's,  
are obtained, the bond structure factor can be calculated 
from equations (8) and (9). 

As a simple example, we consider a hypothetical crystal 
composed of HE molecules which are located at corners 
of unit cells of a simple cubic lattice with their molecular 
axis along the a direction. The lattice constant of 20 atomic 
units (a.u.) and the H - H  distance of 1.4 a.u. were assumed, 
then the fractional coordinate of the hydrogen nucleus is 
x =  0-70/20= 0.035. From equations (8) and (9) we obtain 

Fn(hkl)= (1/V)~g*(h',k',l')g(h'- h , k ' -  k , l ' -  l) 
h',k',l' 

x cos 2rff2h ' -h)  x .  (10) 

g(hkl) is given from the Slater wave function, 

~(ls) (1/l/re) exp ( - r ) ,  
by 

g(hkl) = 8 I/Tr(1 + A,2A*2 ~-1 . . . . .  ht, t, , (11) 

where d~,kz is the reciprocal of the spacing of reflection plane 
(hkl). Calculated values of FB(hkO) for a* and b* directions 
in which g(h'kT) is taken from h', k', l '  = 0 to h', k', l ' =  10 are 
shown in Fig. 1. It is found that the contour map of Fs(hkO) 
which is identical with the bond scattering factor f8 in the 
simple cubic lattice has an anisotropy enlongated in the 
b* direction. 

In order to see the contribution of the bond scattering 
factor fm we consider the structure factor Fo(hkl) without 
the contribution of fB. Fo(hkl) of the crystal is given by 

Fo(hkl) = 2fz4 cos 2zrhx, (12) 
where 

fu  = l ~0*(ls)tp(Is) exp (2tr i l l .  X)dX= (1 + 7~2d~) -1 . 

From equation (1) we obtain 

FvB(hkl) = (na +nb) fH cos 2nhx + (nab/Sab)f~, (13) 

where na =nb = 1/(1 + S,,b)2 = 0.6382 and nab = 2S2b/(1 + S2b) = 
0"7235 (na+no+nab=2) using the VB method, and Sa~,= 
[q)](ls)~ob(ls)dr = 0"7529. The comparison between FvB(hkO) 
and Fo(hkO) for the a* and b* directions is shown in Fig. 1. 
We can see clearly that the contribution of bond electrons 
for the a* direction is larger than that for the b* direction. 
This result is reasonable because the molecular axis of H2 is 
assumed to lie along the a direction, and is similar to the 
result of McWeeny (1952). 

The authors express their thanks to Professor K. Nakatsu 
and Professor S. Naya for their valuable discussions and 
helpful comments on the manuscript, and to Mr M. Fukui 
and Mr Y. Utsumi for their help in the numerical calcu- 
lation. 
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It is pointed out that a method recently suggested for evaluating the radial density distribution of long rods 
is not new and the necessary conditions for its application are emphasized by a simple treatment. 

Fedorov & Aleshin (1966) described a Hankel transform 
method of calculating the radial electron density distribu- 
tion o(r) for long rigid cylindrical molecules with a cylindri- 
cal symmetry of o(r) about the rod axis. Carlson & Schmidt 
(1969), using this method, have examined the relationship 
between theoretical models for o(r) and calculated distribu- 
tions when data for the intensity of scattering by dilute so- 
lutions'are available over a limited range of scattering angle 

( s=0  to S=Smax, s--2 sin 0/2, 0 being the Bragg angle). 
It is the purpose of the present note to point out that 

Fedorov & Aleshin's method is not a new one and that the 
complexities of their analysis can be avoided. In conse- 
quence the necessary assumptions for the method to be val- 
id are clarified. 

The Fedorov & Aleshin method is a variant of the 
Fourier--Bessel transform method used, for example, to 


